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An introduction to molecular
structure

Now we come to the heart of chemistry. If we can understand the forces that
hold atoms together in molecules, we may also be able to understand why,
under certain conditions, initial arrangements of atoms change into new ones
in the course of the events we call ‘chemical reactions’. The aim of this chapter
is to introduce some of the features of valence theory, the theory of the forma-
tion of chemical bonds. The description of bonding has been greatly enriched
by numerical techniques, and the following chapter describes these more
quantitative aspects of the subject.

There are two principal models of molecular structure: molecular orbital
theory and wvalence bond theory. Both models contribute concepts to the
everyday language of chemistry and so it is worthwhile to examine them both.
However, molecular orbital theory has undergone much more development
than valence bond theory, and we shall concentrate on it.

The Born-Oppenheimer approximation

It is an unfortunate fact that, having arrived in sight of the promised
land, we are forced to make an approximation at the outset. Even the
simplest molecule, H3, consists of three particles, and its Schrodinger
equation cannot be solved analytically. To overcome this difficulty, we
adopt the Born—-Oppenheimer approximation, which takes note of the
great difference in masses of electrons and nuclei. Because of this differ-
ence, the electrons can respond almost instantaneously to displacement of
the nuclei. Therefore, instead of trying to solve the Schrédinger equation
for all the particles simultaneously, we regard the nuclei as fixed in
position and solve the Schrodinger equation for the electrons in the static
electric potential arising from the nuclei in that particular arrangement.
Different arrangements of nuclei may then be adopted and the calculation
repeated. The set of solutions so obtained allows us to construct the
molecular potential energy curve of a diatomic molecule (Fig. 8.1), and in
general a potential energy surface of a polyatomic species, and to identify
the equilibrium conformation of the molecule with the lowest point on
this curve (or surface). The Born—Oppenheimer approximation is very
reliable for ground electronic states, but it is less reliable for excited
states.
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Fig. 8.1 A typical molecular
potential energy curve for a
diatomic species.

Fig. 8.2 The coordinates used
in the discussion of the Born—
Oppenheimer approximation.

8.1 The formulation of the approximation

The simplest approach to the formulation of the Born—-Oppenheimer

approximation is to consider a one-dimensional analogue of the hydrogen

molecule—ion, in which all motion is confined to the z-axis (Fig. 8.2). The full

hamiltonian, H, for the problem is
s h
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V(Z,Z1,Zz) (81)

where z is the location of the electron and Z;, with j = 1,2, the locations of the
two nuclei. More simply:

H=T.+Tn+V

for the electron kinetic energy, the nuclear kinetic energy, and the potential
energy of the system, respectively. The Schrodinger equation is

H'Il(zathZ) :Egl(z’ZhZZ) (82)
We attempt a solution of the form
'P(z9Z1)ZZ) = w(Z;ZbZZ)X(ZlaZZ) (83)

where  is the electronic wavefunction and y (chi) is the nuclear wavefunc-
tion. The notation y(z;Z1,Z,) means that the wavefunction for the electron is
a function of its position z and depends parametrically on the coordinates of
the two nuclei in the sense that we get a different wavefunction y(z) for each
arrangement of the nuclei. When this trial solution is substituted into eqn 8.2
we obtain

Hiy = yTep + YTy + Vi + W = Eyy (8.4)

where

n? ( oy oy
O D (X e 2
=12 Zm] GZ, 6Z, OZZ
This latter quantity is non-zero because i depends on the nuclear coordinates,
so Y/0Z; is non-zero. However, because the nuclear masses occur in the
denominator, we suppose that W is small and can be neglected and instead of

eqn 8.4 try to solve'
1T + YTy + Vg = Evry

or, collecting terms and rearranging slightly,

YTy + (Tey + Vi) = Egy (8.5)
As a first step at solving eqn 8.5 we write
Ty + VY = Ee(Z1, Z2)Y (8.6)

1. W is responsible for so-called ‘non-adiabatic effects’, which can be very important when
interactions between electronic states are significant. For further details, see the Further reading
section.



A s

B
A R
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used to specify the hamiltonian for
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Fig. 8.4 The elliptical coordinates u,
v, and ¢ used for the separation of
variables in the exact treatment
(within the Born-Oppenheimer
approximation) of the hydrogen
molecule-ion.
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for fixed values of the nuclear coordinates. This equation is the Schrodinger
equation for the electron in a potential V that depends on the fixed locations
of the two nuclei. The solution is the electronic wavefunction v, and the
eigenvalue E.(Z1,Z,) is the electronic contribution to the total energy of the
molecule plus the potential energy of internuclear repulsion at the preselected
nuclear locations. It is this function that when plotted against the nuclear
position gives the molecular potential energy curve.
Finally, on substituting eqn 8.6 into eqn 8.5, we find

YTy + Eeby = Eyy
and on cancelling ¥ obtain
Ty + Eey =Ey (8.7)

This equation is the Schrédinger equation for the wavefunction y of the nuclei
when the nuclear potential energy, now represented by E., has the form of the
molecular potential energy curve. Its eigenvalue E is the total energy of the
molecule within the Born-Oppenheimer approximation.

From now on (in this chapter) we shall concentrate on eqn 8.6, but write it
more simply and generally, and with the normal symbols for the potential
energy and total energy, as

hl

Hy=FEy H=-—5_

V24V (8.8)

where Vis the potential energy of the electron in the field of the stationary nuclei
plus the nuclear interaction contribution and E is the total electronic and
nucleus—nucleus repulsion energy for a stationary nuclear conformation.

8.2 An application: the hydrogen molecule-ion

Even within the Born—-Oppenheimer approximation there is only one mole-
cular species for which the Schrédinger equation can be solved exactly: the
hydrogen molecule-ion, H . The hamiltonian for this species is

o, e? e e

H=- — —
2me Amegra  4meorp * 4meoR

(8.9)

with the distances defined in Fig. 8.3. The final term represents the repulsive
interaction between the two nuclei, and within the Born-Oppenheimer
approximation is a constant for a given relative location of the nuclei.

As Hj has only one electron, it has a status in valence theory analogous to
the hydrogen atom in the theory of atomic structure. Just as the Schrodinger
equation for the hydrogen atom is separable and solvable when expressed in
spherical polar coordinates, so the equation for Hj is separable and solvable
when expressed in ‘ellipsoidal coordinates’ (u,v,¢), where

e (8.10)
and ¢ is the azimuthal angle around the internuclear axis (Fig. 8.4). In these

coordinates, the two nuclei lie at the foci of ellipses of constant u. The
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Fig. 8.5 The molecular potential
energy curves for the hydrogen
molecule-ion.

(a)

(b)

Fig. 8.6 Contour diagrams of the
(a) bonding and (b) antibonding
orbitals (1o and 20, respectively) of
the hydrogen molecule—ion in the
LCAO approximation.

resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hj are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.” However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R — 0 is largely due to the
increase in the nucleus—nucleus potential energy as the two nuclei are brought
close together. At large distances, as R — oo, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R = 24y, and its energy
then lies about 0.20hcRy (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that HJ is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2aq
(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2¢) has an internuclear node whereas the lower energy orbital
(1) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1a
than if it is described by 2¢.> The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1o,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hj at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply

2. A reference to their form is provided in the Further reading section.

3. The label o signifies the cylindrical symmetry of the orbital about the internuclear axis.
A ¢ orbital has zero units of electronic orbital angular momentum about that axis, a fact used in
Section 8.4.
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curved), a significant reduction in potential energy overcomes all these
unwanted effects, and the net outcome is a lowering of energy. The formation
of 20, on the other hand, results in a small expansion of the electron dis-
tribution around the nuclei, and that has a net energy-raising effect. In other
words, it is not the shift of electron density into the internuclear region that
lowers the energy of the molecule but the freedom that this redistribution
gives for the wavefunction to shrink in the vicinity of the two nuclei.

In what follows, we shall anticipate the formation of a bond—as signalled
by a lowering of the energy of the molecule—whenever there is an enhanced
probability density in the internuclear region, but accept that this might be no
more than a correlation rather than a direct effect on the energy of the
molecule. A detailed analysis has been performed only for Hs, and the
argument might be quite different in other molecules.*

Molecular orbital theory

A difficulty will already have become apparent: the solution of the
Schrodinger equation for Hi is so complicated (even after making the Born—
Oppenheimer approximation) that there can be little hope that exact solu-
tions will be found for more complicated molecules. Therefore, we must
resort to another approximation, but use the exact solutions for Hy as a
guide. Another reason why making a further approximation is quite sensible
is that we already have available quite good atomic orbitals for many-electron
atoms, and it seems appropriate to try to use them as a starting point for the
description of many-electron molecules built from those atoms.

8.3 Linear combinations of atomic orbitals

Inspection of the form of the wavefunctions for HY shown in Fig. 8.6
suggests that they can be simulated by forming linear combinations of
hydrogen atomic orbitals:

w+%¢a+¢b l//— %d)a_d)b (811)

where ¢, is a Hls-orbital on nucleus A and ¢, its analogue on nucleus B.’
In the first case, the accumulation of electron density in the internuclear
region is simulated by the constructive interference that takes place between
the two waves centred on neighbouring atoms. The nodal plane in the true
wavefunction is recreated by the destructive interference between waves
superimposed with opposite signs.

The partial justification for simulating molecular orbitals as an LCAO,
a linear combination of atomic orbitals, can be appreciated by examining

4. See M.]. Feinberg, K. Ruedenberg, and E.L. Mehler, The origin of binding and antibinding in
the hydrogen molecule—ion. Adv. Quantum Chem., 27,5 (1970).
5. In this chapter, we use ¢ to denote an atomic orbital and i to denote a molecular orbital.



