
Overview of architectures with Arduino boards as

building blocks for data acquisition and control

systems

Vladimir Cvjetkovic

Faculty of Science

University of Kragujevac

Kragujevac, Serbia

vladimir@kg.ac.rs

Milan Matijevic

Faculty of Engineering

University of Kragujevac

Kragujevac, Serbia

matijevic@kg.ac.rs

Abstract— Standard SBCs (Single Board Computer) with

number of standard shields and sensors can be used as building

blocks for rapid development of network of intelligent devices with

sensing, control and Internet access. Arduino family of boards

having high popularity and large number of sold units featuring

open access, reliability, robustness, standard connections and low

prices, possesses large potential for implementation of

autonomous remote measurement and control systems of various

levels of complexity. As Arduino boards can function

independently, they are complete small computer platforms that

can perform various tasks requiring some kind of interaction with

the outer world. Arduino boards can be used and programmed in

various ways, and can be arranged in various combinations

forming some typical implementation architectures that this paper

discusses. Starting from basic and simple configurations, more

advanced are gradually considered from the aspects of chosen way

of programming and combining with other boards. Special

attention is devoted to NodeJS as programming platform for

Arduino boards and considerations of libraries used with Arduino

boards like Johnny-Five, Galileo-io firmata equivalent, mraa

library and other ways of program access to GPIO like Linux

Sysfs. As typical representatives of Arduino boards’ family, the

Arduino Uno, Arduino Due and Arduino Galileo were selected,

with justification that all other not mentioned boards are

somewhere between those selected, according to official hardware

specifications.

Keywords— Arduino; NodeJS; Johnny-Five; configurations

I. INTRODUCTION

Appearance and development of various SBCs like Arduino
[1, 2], BeagleBone [3], RaspberryPi [4], RIoTboard [5],
PandaBoard [6], OLiMEX [7] and others together with mobile
phones, created enormous potential for building various devices
capable of interaction with environment, data processing and
network communication. Such devices are nowadays also seen
and classified as being part of Iot (Internet of Things). Required
functionalities of IoT devices are usually:

 M2M (Machine to Machine) communication

 Some kind of data acquisition using adequate sensors

 Local processing of acquired data

 Control of some local system

 Upload of acquired and processed data to some cloud
network storage

Some or all of these functionalities can be present including
also some specific not mentioned here. Mentioned
functionalities are quite general and do not pose limitations by
themselves, as the real limits of IoT devices are mainly
determined by processing power, speed, available memory,
power consumption and similar characteristics. If the task for
some IoT device is too demanding, the possibility of logically
redefining the task so that more than one IoT device could be
used and combined to fulfill the given task, should be
considered. That further suggests the use of a number of
inexpensive IoT devices with small computing power in a
network of devices possessing a significant net effect not
possible with a single IoT device.

Regardless of used architecture, including a single device or
many devices, each device should operate reliably and in
predictable way.

Following chapters are organized in this way:

Chapter 2 Overview of Arduino family, with currently
available Arduino general purpose boards grouped according to
processors on board.

Chapter 3 Overview of programming modes and
connections with Arduino boards, enabling various acquisition
and control configurations.

Chapter 4 Overview of architectures with Arduino boards

Chapter 5 Conclusion

Acknowledgement and References

II. OVERVIEW OF ARDUINO FAMILY

Arduino family of boards was selected among others for its
popularity resulting in a large number of users and a number of
boards to choose from. Besides boards that are more like general
purpose computer devices, there are also boards called “shields”
that extend functionalities of boards for purposes like Ethernet,

mailto:vladimir@kg.ac.rs
mailto:matijevic@kg.ac.rs
http://pandaboard.org/content/pandaboard-was-big-android-bbq

WiFi and GSM communication, use of SD cards, motor and
relays control, space orientation and other.

Arduino boards are based on Atmel microcontroller units
(MCU). On some more powerful devices there is an additional
microprocessor computer providing greater processing power
and network communication.

Arduino boards [8] Uno, Nano, Mini 05, Mega 2560,
Leonardo, Micro, Robot, Esplora are based on Atmel MCUs
with AVR architecture.

 ATmega328 – Uno Nano and Mini 05

 ATmega2560 – Mega 2560

 ATmega32u4 – Leonardo, Micro, Robot, Esplora

Some of the boards have variants with added functionalities:

 Arduino Ethernet (ATmega328) based on Uno,
Ethernet enabled, Micro SD card

 Mega ADK (Accessory Development Kit)
(ATmega2560) for use with Android phones

 Leonardo ETH (ATmega32u4) based on Leonardo,
Ethernet enabled, Micro SD card

All previously mentioned Arduino devices have AVR MCU
operating at 16MHz frequency.

Arduino Due is different, as it is based on Atmel SAM3X8E
MCU with 32-bit ARM Cortex-M3 CPU (Central Processing
Unit) core running on 84MHz. Also, Due has significantly larger
memory – SRAM (Static RAM) for program and flash memory
for uploaded code.

Arduino M0 and M0 Pro are advanced versions of Uno based
on SAMD21 MCU, with 32-bit ARM Cortex M0 core running
at 48MHz.

Arduino boards Industrial 101, Tian, Yun, Yun Mini, are
MCU based, but also have additional MIPS processor [9] based
computer supporting Linino [10] Linux distribution based on
OpenWRT [11]. Additional Linux computer provides extra
processing power for support of MCU acquisition and control
tasks.

Boards Intel Galileo and Intel Galileo Gen 2 are based on
Intel Quark SoC X10000, a 32-bit Intel Pentium processor-class
system on a chip (SoC). That processor runs both the Linux and
Arduino acquisition code. Intel Galileo boards are pin to pin and
software compatible with other Arduino boards.

Finally, the Intel Edison board is based on two processors,
the Intel Atom 500MHz dual-core, dual-threaded CPU and an
Intel Quark 100MHz MCU.

From this brief overview of current Arduino boards, it can
be seen that there are two kinds of boards:

 With MCU as single processor capable of running
Arduino code, called sketch

 Boards with added processor for running Linux
which provides additional processing power and
supports acquisition and control tasks of MCU

 Intel Galileo and Intel Galileo Gen 2 boards as a
special case of boards running Linux where Intel
processor executes both Arduino sketch and Linux

Arduino Uno board is a typical representative of MCU only
based boards, as an effort was made for other boards to be pin to
pin and software compatible.

Arduino Due is a top representative of high performance
MCU only based boards, as it has highest MCU clock frequency
and available memory.

Intel Galileo is a representative of MCU boards with added
Linux computer for additional processing support of acquired
data and network communication.

III.OVERVIEW OF PROGRAMMING MODES AND CONNECTIONS

WITH ARDUINO BOARDS

A. Features of Arduino boards

Arduino boards [12, 13] are designed to provide interaction
of a computer system with some environmental physical
quantities using appropriate sensors. All boards possess general
purpose inputs and outputs (GPIO). Presence of GPIO is the
main difference from usual computer systems for everyday use
– desktop, laptop, tablets and smart phones. GPIO has two main
types of input / output system, analog and digital. All Arduino
boards have analog inputs (AI) for voltage measurement.
Number of analog input pins and resolution varies for different
boards. Analog output (AO) can be implemented with digital
outputs as PWM (Pulse Width Modulation) or with ADC
(Analog Digital Converter) circuit. Digital pins can be used both
as input and output (DIO). Arduino boards support USB
communication with external computer running Arduino IDE
(Integrated Development Environment) for programming in
language resembling C. Other supported communications types
are UART (Universal Asynchronous Receiver Transmitter) TTL
(Transistor Transistor Logic), I2C (Internal IC) / TWI (Two Wire
Interface) and SPI (Serial Peripheral Interface). SPI is mainly
used for connecting boards with various shields as it provides
very fast communication. UART is hardware implemented for
USB on digital lines 0 and 1, but it can be also quite easily
software implemented with provided SoftwareSerial library
using digital I/O. Serial communication is convenient for data
exchange between boards. TWI can also be used for
communication between boards or other devices with provided
Wire library and using SDA (Serial DAta) and SCL (Serial
CLock) lines.

Besides GPIO, very important programming aspect is
available memory which is limited as it is part of MCU, and
organized as flash memory for code, SRAM (Static RAM) for
program execution and EEPROM (Electrically Erasable
Programmable Read-Only Memory) as permanent storage for
data. Some boards like Yun, Galileo, Arduino Ethernet and
shields like Ethernet, also provide program access to SD
memory cards. Dynamic characteristics of boards like maximum
rate of measurements depend on many factors, with MCU
operating frequency as one of the important but rough indicators.
Rates for digital IO operations are higher than for analog
measurements which use analog digital converter (ADC) circuit
that in general requires many processor cycles for conversion.

TABLE I. FEATURES OF SELECTED BOARDS

Features of selected boards are compared in Table 1.

B. Programming modes of Arduino boards

Arduino and compatible boards can be programmed in a number
of ways. Depending on selected way of programming, Arduino
boards can be used in a variety of configurations ranging from
simple with only one board, to configurations including two or
more boards and other devices. This paper will consider and
discuss using of JavaScript (JS) programming language with
various configurations primarily consisting of, and based on
Arduino boards. Use of JS can also include communication with
Arduino boards programmed in Arduino language (AL)
resembling C. Programming modes of Arduino boards that will
be considered in this paper are:

 Programing in AL from Arduino IDE

 Using JS with Standard Firmata and Johnny Five
framework

 Using Sysfs on boards with Linux

 Using NodeJS on boards with Arduino-IO library
and Johnny Five framework

1) AL and Arduino IDE
All Arduino boards including compatible boards like

Galileo, can be programmed in Arduino IDE which is used for
program development in AL. IDE creates project with skeleton
code, a starting point for development of user code arranged and
saved in unit called sketch. It performs syntax check of sketch
code, compiles and uploads compiled code to selected board
using USB connection.

Arduino sketch Compiled code

Arduino boardArduino IDE

USB

Fig. 1. Arduino board connected with PC

IDE comes with large number of example sketches covering
wide range of possible applications with sensors, actuators,
displays, communication, extension boards, SD cards and
support for some specific boards like Robot, Esplora and others.

Fig. 1 illustrates the basic connection of Arduino board with
PC using USB cable. Once the compiled program code is
uploaded to board flash memory, program execution
automatically starts and functions as independent system.

After start of the program, data from Arduino board can be
obtained using monitor program available from IDE which
displays data sent from running program. Data display from
monitor program can be a very useful debugging tool.

User developed custom sketches can include many libraries
available from IDE that support various functionalities of
Arduino boards:

 SPI

 Ethernet

 WiFi

 GSM

 TWI - Wire

 UART – software serial

Some libraries are supplied from a sensor manufacturer, like
for instance DHT library for Digital Temperature and Humidity
sensor [14] from AdaFruit [15].

Advanced boards that have besides MCU also the on board
Linux system, like Yun, can communicate with Linux system
from sketch code using Bridge library from AL.

2) JS with Firmata and JohnnyFive library
Java Script (JS) is best known as language for web clients

scripting, providing functionalities for web pages. JS is quickly
gaining popularity and spreading to web server platforms due to
appearance of NodeJS [16] which is JS platform based on
Chrome V8 JavaScript engine. NodeJS offers use of the same
language and technology both on web clients and servers.
Besides, NodeJS on web servers offers good performance and
execution of asynchronous JS code. NodeJS quickly spreads to
various computing areas with development of NPM [17] (Node
Package Manager) modules that are installed in NodeJS and
extend available functionalities. JS as a language of web enters
the fields of IoT and robotics with development of Johnny-Five
[18] (JF) JS programming framework. As the Arduino boards
cannot be directly programmed in JS, the matching software
layers are required consisting of the mentioned JF framework
and Arduino StandardFirmata [19] (ASF) library. ASF is
installed in Arduino board flash memory as sketch implementing
the Firmata protocol [20] (FP) for communication between
MCU and application on host computer. JS code running on
NodeJS platform on host PC using JF framework communicates
with Arduino board over USB cable and FP. Such a
configuration is presented in Fig. 2. JF currently introduces some
limitations when accessing boards with advanced features
comparing to standard Arduino Uno board. 12 AI pins of
Arduino Due, comparing to 6 of Uno, can be accessed by JF but

Board /

features
Uno Due Galileo

AI 6, 10 bits 12, 12 bits 6, 12 bits

AO 6, PWM, 8 bits 2, DAC, 12 bits 6, PWM 8 bits

DIO 14, 6 PWM, 8

bits

54, 12 PWM 8 bits 14, 6 PWM 8 bits

Processor ATMega 328 AT91SAM3X8E Intel Quark SoC
X1000

Clock 16 MHz 84 MHz 400 MHz

Flash 32 KB 512 KB 8 MB / 512KB

SRAM 2 KB 96 KB 512 KB

DRAM - - 256 MB

EEPROM 1 KB - -

Micro SD - (on shield only) - (on shield only) Up to 32 MB

Ethernet - (on shield only) - (on shield only) 10/100 Mb/s

Arduino FirmataJohnny-Five

Arduino boardNodeJS

USB

Fig. 2. Arduino programming with JS

with analog resolution of only 10 bits as is for Uno, although
Due has analog resolution of 12 bits. Programming elegance of
JF has to be paid with some limitations when accessing
advanced boards features, which makes JF use acceptable only
for basic boards. Further development of JF may bring
improvements.

3) Programming with Sysfs on boards with Linux
Advanced boards that have an extra processor in addition to

MCU can be programmed with standard Arduino IDE in AL, the
same as boards without extra processor, and with tools generally
available from Linux operating system (OS). Additional
processor comes with significantly larger memory and higher
operating frequency. Besides higher processing power, Linux
computer with MPU usually also comes with integrated network
adapters and memory card readers. Basic difference between
MCU and MPU is a real time operation which is possible with
MCU, but not with MPU. MPU systems on Arduino boards host
some Linux distribution like Linino which is based on OpenWrt
on Yun board, and Yocto [21] Linux distribution for Intel
Galileo board. The basic Linux distributions are preinstalled on
Yun and Galileo boards. Galileo board supports installation of
other Linux distributions from Intel, allowing that way for
installation of the latest version which also has additional
packages. Alternate Linux distribution for Galileo is created
from the image to micro SD card, and allows for booting the new
version if the SD is inserted to board, if not, factory default will
be active. Yun can also update Linux from SD card.

On board Linux system can be reached in various ways. Yun
has a so called “bridge”, which is a library for passing
information between processors and allows reaching Linux from
IDE sketches and vice versa. There are two IDEs for Galileo
Linux programming, the Intel XDK IoT Edition [22] primarily
for NodeJS programming in Linux and Intel version of Eclipse
IDE [22] for Java and C++ programming. IDEs also support and
enable project files upload to board.

Besides using IDEs, on board Linux system can be reached
with serial communication and SSH client like Putty [23]
providing access to Linux from terminal. Yun can be reached
through built in network adapters, while Galileo also offers
connection through RS 232 serial cable which is convenient for
initial Linux system configuration. File transfer with Linux
system can be accomplished with SCP (Secure CoPy) clients
based on SSH, like WinSCP [24].

Fig. 3. Configuration and reading of A0 with Sysfs

Galileo GPIO ports can be accessed from Linux shell using
Sysfs interface [25]. Sysfs is a virtual file system in Linux which
exposes devices as files, and operations with devices as file
operations which is presented in Fig. 3.

In order to be used, GPIO port has to be exported to Sysfs.
For analog input A0, the GPIO port 37 which controls the
multiplexer channel 0 is exported as:

echo -n "37" > /sys/class/gpio/export

After exporting, the direction is specified:

echo -n "out" > /sys/class/gpio/gpio37/direction

A0 input is connected to ADC AD7298 circuit used in
Galileo with:

echo -n "0" > /sys/class/gpio/gpio37/value

After setting up, analog value from A0 can be obtained with:

cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw

Fig. 3 displays previous commands and results of 3 readings
of A0 connected to function generator. In a similar way, digital
IO can be accessed and controlled, including PWM. If executed
from within a program in Linux, these commands can be
regarded as a GPIO API.

Fig. 4 illustrates concept of program development with Sysfs
that requires no special IDE for Arduino or Galileo.

Program using Sysfs can be developed on host PC, then
uploaded to Galileo and started from shell using SSH based
clients. It is also possible to develop program on Galileo only,
by creating all files from shell.

4) Hosting NodeJS on board
Boards with Linux system can host applications requiring

use of GPIO. NodeJS applications hosted on board and using JF
framework have many advantages comparing to NodeJS
applications hosted on PC and managing MCU systems via USB
and Firmata protocol.

Program files Linux Sysfs

SSH client Galileo

Internet

USB COM

Fig. 4. Program development with Sysfs

Program files Johnny Five / Galileo-IO

SSH client Galileo

Internet

USB COM

Fig. 5. Program development with JF / Galileo-IO

Board that hosts JF based application can operate
independently, not requiring extra PC. Consequently,
applications based on single device tend to be more robust in
some situations, as the automatic restart after power failure for
instance. It is also expected that higher signal rates will be
possible by omitting USB and Firmata protocol communication.

As the JF framework was designed to work with Firmata
protocol, additional software layer with same interface is
required when executing on the host board. That additional
software layer is Galileo-IO [26], an IO plugin for JF and also
standalone module, which can be used independently from JF in
NodeJS applications. Fig. 5 illustrates concept of onboard
program development with JF / Galileo-IO.

Besides JF and Galileo-IO, the mraa [27] library can be used
for access to GPIO on Galileo boards from NodeJS, Python and
Java. Intel XDK IoT IDE uses mraa and provides complete
environment for development and upload of NodeJS projects to
Galileo boards including Linux shell access. Fig. 6 illustrates
configuration with Intel XDK IoT IDE and mraa library.

IV.OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS

A. Requirements for system design

Arduino boards can be used for various tasks requiring
interaction with environment. Due to small dimensions, low
power consumption, significant computing potential, ability to
read and generate analog and digital signals, possessing network
connections, these boards are convenient computing platforms
for environment monitoring and control of artificial systems. As
the environment is complex, characterized by many physical
quantities, development of corresponding applications for
monitoring and control requires adequate design in broader
sense that consists of standard phases of software design or
software life cycle phases.

Project files Libmraa

Intel XDK IoT Galileo

Internet

USB COM

Fig. 6. Program development with Intel XDK IoT IDE and mraa library

Analysis of the environment and system to be controlled
creates model that includes physical quantities to be measured
and aspects to be controlled. Physical quantities are of analog
nature with continuous values requiring use of adequate
measurement converters or sensors which output standard
electrical signals measured by analog inputs on boards which
can also generate analog and digital signals for control of
devices and actuators, and communication with other systems.

Depending on complexity of required task, systems with
various configurations can be designed. Configuration aspects
that are of interest for this paper are choice of the board, board
programming, communication with other systems, single or
multi board system, and scalability of the monitoring and control
system. Configurations of measurement and control devices
attached to GPIO board pins will not be considered.

B. Single board configuration

Board with uploaded sketch and power supply operates as
independent device. Fig. 1 illustrates such simple configuration.
PC is required for sketch development and upload to board, but
after that board functions on its own. Computing resources and
GPIO pins on one board may be enough for monitoring and
control application, and if the task of the board is to serve as
autonomous controller or regulator for some system, such
simple configuration is quite adequate. Possible problem with
such simple configuration may arise if the communication and
transfer of acquired data to other computer systems is required
for processing and storage by applications working on other
devices. In some simple cases, the LCD device for display
attached to board as extension may be enough, but in general for
data transfer, a connected PC with running application for data
processing and storage is necessary. Connected PC can further
provide for acquired data transfer and also for extra data
processing and return of processed signals for control purposes.

C. Single board with network communication

Utility of a single board configuration significantly depends
on communication with other computing devices required for
acquired data processing and storage. Boards directly support
various wired serial communications such as UART, SPI, TWI
and USB. Real tasks for monitoring and control frequently
require remote placement of sensing devices attached to board,
with board being also placed near points for monitoring and
control. In such cases an adequate communication channel
between board and other computing device must be provided
over arbitrary distance. A good solution candidate is existing
computer network or an extension of network being quite
satisfactory with the exception of some rare extreme conditions,
such as extreme electrical interference, extreme temperatures,
pressures, chemically active agents and similar that require
advanced solutions. Fig. 7 illustrates single board configuration
using Ethernet adapter called shield in Arduino terminology.

Instead of Ethernet shield, WiFi or GSM shields could be used
depending on specific conditions that may favor one over the
others. Selection of shield also affects the sketch with code, as it
must programmatically support used shield in addition to
acquisition and control tasks. Client symbol in Fig. 7 stands for
any client using the board, being it a software or a human client
using browser.

Arduino sketch Compiled code

Arduino IDE Arduino board Ethernet shield

Internet

USB SPI

Fig. 7. Single board configuration with Ethernet adapter

D. Single board with Ethernet shield and web server

Simple configuration with a single board and Ethernet shield
can provide basic and simplified web access due to limited
memory of microcontroller board. Provided web access is best
used for communication with remote client for the purposes of
sending acquired data from sensors at client request, or receiving
control data from client. In this configuration the client is
software implemented and acts as a bridge between Arduino
board and main web server on a PC computer. User as the main
client directly communicates with web server on PC which can
be arbitrarily complex. Fig 8 illustrates such configuration.
Although any web server can be used, NodeJS is convenient for
good performances, and using JS for code on software client,
server and web page.

E. Single board with Firmata and Johnny-Five

Configuration in Fig. 8 provides web access to Arduino
board using PC based server and network enabled board. In
general case it requires two computers, one for programming,
and other for web, although the same computer could be used
for both tasks, with web server being also used for specific task
of board programming in that case. Board being programmed in
AL deviates from JS programming paradigm. Modified
configuration with Firmata code on board allowing
programming with JS exclusively is illustrated in Fig. 9. That
configuration also does not require network adapter, as the web
server is used for access to Arduino board. Formally, the
configuration in Fig. 9 is equivalent to configuration in Fig. 8
from the aspect of client. Firmata configuration is with less
devices, but AL configuration has two important advantages.

Arduino sketch Compiled code

Arduino IDE Aduino board Ethernet shield

Internet

Internet

N
o

d
e

JS

USB SPI

Fig. 8. Arduino with web client access

Arduino FirmataJohnny-Five

Arduino board

Internet

NodeJS

Fig. 9. Single Arduino board with Firmata and Johnny-Five

First advantage is that Johnny-Five library poses various
limitations for full use of potentials of some boards, and does not
cover some specific sensors for which AL libraries exist. Second
advantage is system scaling, when more boards are added to the
system. Adding of new AL boards might require some changes
of web server software, while adding of Firmata boards would
require new USB hardware connections and adding of software
for serving each USB connected board.

All USB connected boards must be placed within few meters
distance from server, while for AL board with network adapter
distance of physical placement is irrelevant.

F. AL programmed Galileo board

Galileo board although significantly different from boards
with controller is software and pin to pin compatible with
Arduino UNO, so it can be connected, programmed and used the
same as Arduino UNO board. Although more expansive than
UNO, the price of UNO plus the price of network adapter is
comparable to price of Galileo board, suggesting that Galileo
board may be a better investment than Arduino board with
network adapter, bearing in mind Linux OS on Galileo board.
Fig. 10 illustrates equivalent configuration of Galileo board with
configuration in Fig. 7. Important advantage of Galileo
configuration is a significantly larger memory.

G. Galileo Linux programming

Full potential of Galileo board can be unleashed with
programming for its Linux platform. Fig. 11 illustrates the
generic configuration for Galileo Linux programming. Variants
for Galileo Linux programming may differ depending on used
development IDE, programming technology and used support
libraries. As mentioned in previous chapter, three basic
configurations for Galileo Linux programming were considered:

 Sysfs Linux programming, Fig. 4

 NodeJS with JF / Galileo-IO, Fig. 5

 NodeJS with Intel XDK IoT based on mraa library,
Fig. 6

Arduino sketch Compiled code

Arduino IDE Galileo board

Internet

Fig. 10. Galileo board used as UNO board with network adapter

Code for Linux
platform Linux platform

Development IDE Galileo board

Internet

Internet
USB COM

Fig. 11. Configuration for Galileo Linux programming

Each of the configurations can further have its own sub
variants.

Generic programming configuration in Fig. 11 comprise
three configurations with added client. In order to obtain optimal
solution for given requirements, mentioned programming
approaches can be combined.

H. Web Interface for Arduino board

Web communication between Arduino board and software
client can be standardized with definition of appropriate
interface. Fig. 12 illustrates the concept of web interface [28].
Structure of web interface is illustrated in Fig 13. Web interface
specifies allowed commands and operations depending on
configuration of the board.

Main web server communicating with Arduino board in Fig.
12 is implemented as NodeJS on Galileo board suggesting that
whole hardware configuration for monitoring and control can
consist only of Arduino and compatible boards, without PC
computers, with no serious limitations. Arduino board with
Ethernet shield plays a role of the so called acquisition web
server that performs required operations with attached sensors
and devices and sends acquired data, upon received request.
Main web server has software implemented client that sends
requests to acquisition server as a result of user requests to main
web server. Galileo board implementing main web server has
more memory and processing capacities comparing to Arduino
controller boards. Besides hosting a main web server, Galileo
board can also be used for measurement and control.

Arduino sketch Compiled code

Arduino IDE
Arduino board

Acquisition web server Ethernet shield

Internet

Internet

Galileo board
Main web server

NodeJS code

Web Interface

USB SPI

Fig. 12. Concept of a web interface

UNO interface

Web Interface

Board specific interface

Setup specific interface

In
te

rn
et

Non UNO board

Board with exp. setup

UNO compatible board

Arduino web server

Fig. 13. Web interface structure

Web interface in Fig. 13 specifies three possible modes of
communication depending on board being communicated with.
The first mode named “UNO interface” is the most general, as it
specifies standard communication with Uno board that other
boards are compatible with. Specified communication includes
IO pins and if required, access to UART, SPI and TWI
communication can also be specified. Second mode named
“Board specific interface” in addition to first, specifies
communication with particular board having more advanced
configuration than Uno. Separate interface is required for each
non UNO Arduino board. Third interface mode is the most
specific, as it specifies communication with actual setup
configuration connected to board pins, the sensors and actuators.

Arrows in Fig. 13 signify that “UNO interface” as more general
interface can also be used with more specific non UNO boards,
as they are UNO compatible.

I. Scaling of Arduino based system

Various considered configurations with Arduino and
compatible boards may offer adequate solution for measurement
and control tasks on systems which can be located at any place
provided with adequate computer network infrastructure.
Besides network requirement, systems to be monitored and
controlled should be concentrated with components relevant for
measurement and control being relatively close and within reach
of cables connecting sensors and devices with boards. For
systems consisting of components distributed at greater
distances, and with large number of measurement and control
points, an adequate extension of considered basic configurations
is required, that will follow and resemble the configuration of
the system.

Main web server
Level 1

Web server 1
Level 2

Web server 11
Level 3

USER

Acquisition
server A1

Web server 12
Level 3

Acquisition
server A

Acquisition
server B

Web server 2
Level 2

Web server 21
Level 3

Acquisition
server A2

Web server 22
Level 3

Fig 14. Scaling of measurement and control system

Fig. 14 illustrates the schematic of extension structure based
on considered elementary configurations. Remote web user
represented as green block directly access the main web server
which is on the level 1 of extended configuration. Main web
server at level 1 is a direct entry point to scalable monitoring and
control system that can be extended as required.

Configuration only with main web server and acquisition
server A in Fig. 14 resembles configurations in Fig. 8 and 12.
Blue solid lines designate primarily computer network
connections which could also be USB as well, in a special case
when connecting web server at some level with acquisition
server. A number of remote acquisition servers which are boards
with network adapters, can be attached to main web server.
Acquisition servers A and B on Fig. 14 represent acquisition
servers directly connected to configuration level 1 with
possibility of adding more servers on the same level, C, D, etc.
as required. If the structure of distributed system is of
hierarchical type, then it may be more convenient to add new
acquisition servers not directly on level 1, but to also add web
servers which are called by software clients from main web
server. Web servers 1 and 2 in Fig. 14 are examples of web
servers on level 2. Servers at level 2 can be accessed by software
clients from main web server, but could in principle be also
reached directly from the user, which is designated by dotted red
lines. Dotted red lines designate alternate direct access by the
user to web servers on the lower configuration levels. Blue lines
are regular access paths that follow and respect hierarchy, and
are intended to be used by ordinary regular users that access the
system in a safe and prescribed way. Red dotted lines are direct
paths to lower levels that some users can be authorized for, in
order to use it for special purposes, such as maintenance,
troubleshooting, software configuration changes that can require
such direct access. Designation of servers in Fig. 14 follow
hierarchy logic, and in addition, web servers at the same level
have the same color, while all acquisition servers are red.
Hierarchy configuration in Fig. 14 can be extended with
arbitrary number of web servers, configuration hierarchy levels,
and acquisition servers as required.

V. CONCLUSION

SBCs for acquisition and control based on single
microcontroller or with additional processors are quickly
becoming important platforms for various monitoring and
control tasks, due to small dimensions, reliability, enough
computing power, large existing software support, easy
integration with other larger computer systems and low price.
Arduino family of SBCs is particularly interesting for its large
number of users, variety of boards, board extensions,
programming modes, software support and influence on
products of other manufacturers resulting in Arduino compatible
boards. Three representative boards were selected for
consideration and comparison according to hardware
characteristics and programming modes. Boards with additional
processor are particularly interesting as they allow various
programming modes as support for acquisition and control.
Various boards and programming modes result in various
possible combinations called configurations in this paper. Single
board configurations were considered and compared according

to available programming modes with particular attention to
NodeJS and libraries for NodeJS supporting Arduino boards.
Single board configurations are applicable for certain tasks with
real world systems at single location. Applications for remote
and distributed systems require use of network architecture
obtained as direct extension and generalization of considered
basic single board configurations and concept of web interface.
Presented network configuration can be further extended with
arbitrary number of network nodes and hierarchical levels.
Obtained results are directly applicable to configurations with
nodes being some other, non-Arduino boards.

ACKNOWLEDGMENT

Work on this paper was partly funded by the SCOPES
project IZ74Z0_160454 / 1 “Enabling Web-based Remote
Laboratory Community and Infrastructure” of Swiss National
Science Foundation

REFERENCES

[1] “Arduino” [On line] Available: http://arduino.cc

[2] “Arduino” [On line] Available: http://arduino.org

[3] “BeagleBone Black” [On line] Available: http://beagleboard.org/BLACK

[4] “Raspberry Pi” [On line] Available: https://www.raspberrypi.org/

[5] “RIoTboard” [On line] Available: http://riotboard.org/

[6] “PandaBoard” [On line] Available:http://pandaboard.org/

[7] “OLiMEX” [On line] Available: https://www.olimex.com/

[8] “Arduino boards” [On line] Available: http://www.arduino.org/products

[9] “MIPS processors” [On line] Available: http://imgtec.com/mips/

[10] “Linino” [On line] Available: http://www.linino.org/

[11] “OpenWrt” [On line] Available: https://openwrt.org/

[12] M. Švaljek, Arduino Succinctly, Syncfusion Inc., 2501 Aerial Center
Parkway Suite 200 Morrisville, NC 27560 USA, 2015,
http://www.syncfusion.com/

[13] A. D’Ausilio, Arduino: A low-cost multipurpose lab equipment, Behavior
Research Methods, vol. 44, 2, pp 305-313, 2012,
http://dx.doi.org/10.3758/s13428-011-0163-z

[14] “DHT 22” [On line] Available: https://www.adafruit.com/products/385

[15] “AdaFruit” [On line] Available:https://www.adafruit.com/

[16] “Node.js” [On line] Available: https://nodejs.org/en/

[17] “Node Package Manager” [On line] Available: https://www.npmjs.com/

[18] “Johnny-Five” [On line] Available: http://johnny-five.io/

[19] “Standard Firmata” [On line] Available:
https://www.arduino.cc/en/Reference/Firmata

[20] “Firmata protocol” [On line] Available:
http://firmata.org/wiki/Main_Page

[21] “yocto Linux” [On line] Available: https://www.yoctoproject.org/

[22] “Intel XDK IoT Edition” [On line] Available:
https://software.intel.com/en-us/iot/software/ide

[23] “putty” [On line] Available: http://www.putty.org

[24] “WinSCP” [On line] Available: https://winscp.net/eng/download.php

[25] “Linux Sysfs” [On line] Available:
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-
programminggpiofromlinux

[26] “Galileo-IO” [On line] Available: https://github.com/rwaldron/galileo-io

[27] “mraa” [On line] Available: http://iotdk.intel.com/docs/master/mraa/

[28] C. Salzmann, S. Govaerts, W. Halimi, D. Gillet, The Smart Device
Specification for Remote Labs, REV 2015, 25-27 Feb. 2015, Bangkok,
Thailand

http://arduino.cc/
http://arduino.org/
http://beagleboard.org/BLACK
https://www.raspberrypi.org/
http://riotboard.org/
http://pandaboard.org/
https://www.olimex.com/
http://www.arduino.org/products
http://imgtec.com/mips/
http://www.linino.org/
https://openwrt.org/
http://www.syncfusion.com/
http://dx.doi.org/10.3758/s13428-011-0163-z
https://www.adafruit.com/products/385
https://www.adafruit.com/
https://nodejs.org/en/
https://www.npmjs.com/
http://johnny-five.io/
https://www.arduino.cc/en/Reference/Firmata
http://firmata.org/wiki/Main_Page
https://www.yoctoproject.org/
https://software.intel.com/en-us/iot/software/ide
http://www.putty.org/
https://winscp.net/eng/download.php
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-programminggpiofromlinux
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-programminggpiofromlinux
https://github.com/rwaldron/galileo-io
http://iotdk.intel.com/docs/master/mraa/

